Resource Construction and Evaluation for Indirect Opinion Mining of Drug Reviews
نویسندگان
چکیده
Opinion mining is a well-known problem in natural language processing that has attracted increasing attention in recent years. Existing approaches are mainly limited to the identification of direct opinions and are mostly dedicated to explicit opinions. However, in some domains such as medical, the opinions about an entity are not usually expressed by opinion words directly, but they are expressed indirectly by describing the effect of that entity on other ones. Therefore, ignoring indirect opinions can lead to the loss of valuable information and noticeable decline in overall accuracy of opinion mining systems. In this paper, we first introduce the task of indirect opinion mining. Then, we present a novel approach to construct a knowledge base of indirect opinions, called OpinionKB, which aims to be a resource for automatically classifying people's opinions about drugs. Using our approach, we have extracted 896 quadruples of indirect opinions at a precision of 88.08 percent. Furthermore, experiments on drug reviews demonstrate that our approach can achieve 85.25 percent precision in polarity detection task, and outperforms the state-of-the-art opinion mining methods. We also build a corpus of indirect opinions about drugs, which can be used as a basis for supervised indirect opinion mining. The proposed approach for corpus construction achieves the precision of 88.42 percent.
منابع مشابه
ساخت نیمهخودکار یک پیکره از نظرات غیرمستقیم در دامنه دارو و بکارگیری آن برای تعیین قطبیت نظرات
Opinion mining is a well-known problem in natural language processing that has attracted increasing attention in recent years. Existing approaches have been often focused on identifying direct opinions and ignored indirect ones. However, in some domains such as medical, indirect opinions occur frequently. Therefore, ignoring indirect opinions can lead to the loss of valuable information and not...
متن کاملFeature extraction in opinion mining through Persian reviews
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...
متن کاملMining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)
As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...
متن کاملحسنگار : شبکه واژگان حسی فارسی
Awareness of others' opinions plays a crucial role in the decision making process performed by simple customers to top-level executives of manufacturing companies and various organizations. Today, with the advent of Web 2.0 and the expansion of social networks, a vast number of texts related to people's opinions have been created. However, exploring the enormous amount of documents, various opi...
متن کاملConstructing Thai Opinion Mining Resource: A Case Study on Hotel Reviews
Opinion mining and sentiment analysis has recently gained increasing attention among the NLP community. Opinion mining is considered a domaindependent task. Constructing lexicons for different domains is labor intensive. In this paper, we propose a framework for constructing Thai language resource for feature-based opinion mining. The feature-based opinion mining essentially relies on the use o...
متن کامل